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Uncertainty of coordinate measurements 

Comparison of various methods of uncertainty evaluation 
 
 
Abstract: The number and positions of the measured points both have a great effect on the 
uncertainty of coordinate measurements, as may be illustrated by the confidence intervals of the 
geometric features. The procedures of uncertainty assessment recently discussed are either based on 
repeated measurements or on the simulation of errors of measurements respectively. Comparing these 
procedures with the mathematically exact solution, the advantages and disadvantages of the methods 
they are based on may be clearly identified. Only the exact solution may be used to assess the effects 
of the various influence quantities on the uncertainty. 

1. Fundamental principles of uncertainty evaluation 

Today, the Guide to the Expression of Uncertainty in Measurement (GUM) [1] is the internationally 
accepted basis to assess the quality of measurements and to guarantee their comparability. The main 
requirements for the evaluation and documentation of the uncertainty are: 

• Statement of the mathematical function Y=f(Xi) for the relationship between the measurand Y and 
the influence quantities Xi representing the essential uncertainty components 

• Determination of the best estimates xi of the influence quantities Xi by statistical analysis or 
otherwise 

• Determination of the standard uncertainties u(xi) of the influence quantities Xi by statistical analysis 
or otherwise 

• Calculation of the covariances of potentially correlated influence quantities 

• Calculation of the measurement result y as the value of the measurand Y derived from the function 
Y=f(Xi) using the best estimates xi of the influence quantities Xi 

• Determination of the combined standard uncertainty uc(y) of the result from the standard 
uncertainties u(xi) and from the covariances 

• Expression of the expanded uncertainty U=k .uc(y); usually the expansion factor k=2 for a level of 
confidence of about P=95% is used 

• Documentation of the result y with the combined standard uncertainty uc(y) or the expanded 
uncertainty U with a description of how y and uc(y) or U were determined 

At first, the implementation of these requirements is a question of practice. The main challenge lies in 
how to establish the mathematical model of the measurement. Provided that it exists, the essential 
influence quantities may be easily recognized by the individual uncertainty components neglecting the 
others. 
In coordinate measurement such detailed uncertainty determinations have not previously been carried 
out, because they are slightly more complicated. A special problem is the calculation of the uncertainty 
of the least square elements, which may usually not be expressed as a closed solution. However, the 
principles of the GUM are valid here, too (see [1], items 3.1 and C.3.5). The interesting thing about it is 
that the covariances between the individually resulting parameters of the least squares features are 
significant and generally not negligible. 

2. Coordinate measurements 

Several ways of calculating “best-fit” associated features are used in the software of most modern 
coordinate measuring machines (CMM). The most important of them is the method of least squares, 
calculating ideal geometric associated features from a relatively large number of measured points. The 
decisive advantage of this method is the excellent stability of the results compensating the errors of the 
individual points. It was established by C. F. GAUSS more than 200 years ago, and it is still today the 
fundamental method in all scientific and technical measurements. 
The method of least squares und its uncertainty are generally described e.g. in [2] and within the 
German standard DIN 1319-4 [3]. Its application in coordinate measurement has been published e.g. 
in [4] and [5]. 
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In least squares calculations, a linear homogenous equation system 

M .x = v      rsp. x = M
-1.

v     with M  = A
T
A     (1) 

is to be resolved. The matrix M of normal equations (rsp. the design matrix A [6]) contain the positions 
of the individually measured points on the surface of the geometric feature, the vector v the deviations 
of these points from the ideally geometric feature, and x being the vector of the solutions of the 
equation system as the individually resulting parameters. The matrix M

-1
 inverse to M is often indicated 

by the letter Q. Its multiplication with the variance σ² of the random and independent errors of the 
measured points from the ideally geometric feature results in the covariance matrix S, describing the 
mutual interdependence of the parameters of the geometric features as the measurands: 

S = M
-1.σ² = Q .σ²  (2) 

The variances and covariances of the individually resulting parameters are calculated from the 

elements of the covariance matrix [2-5]. The variance σ² in first approximation may be estimated by the 
deviations of the measured points from the least squares feature. Should these deviations contain 
systematic components (e.g. because of local deviations of form on the surface), they may be 

separated from the random components, thus reducing the variance σ² and the uncertainties [3-5, 7]. 
The variances and covariances calculated in this way may be used in further uncertainty evaluations of 
coordinate measurements according to the GUM. 

3. Least squares circle 

At the least squares circle (with φi being the polar angels of the n measured points and the parameters 
x, y and r), the matrix M of normal equations results in: 

M = 
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The dependence of the uncertainty of the individually resulting parameters on the positions of the 
measured points can be clearly illustrated. The confidence interval is small in the region of measured 
points capturing the real surface, and becomes wide with increasing distance to this section (Fig. 1). 
The confidence interval of the centre of the circle is an ellipse with a characteristic orientation, and the 
uncertainty of the diameter is remarkable, too. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: 
Confidence intervals of the centre and the 
line of a circle with 12 points arranged at a 
sector with an angle of 90°; the uncertainty 
of the least squares circle is determined by 
the position of the measured points 
 

 
 
Ideally, the measured points may be positioned in equal distances around the entire circumference. 
Then, the confidence interval of the circle’s line is equally slim at every point, and that of the centre 
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point a circle in itself (Fig. 2). In this case the covariances disappear, and the standard uncertainties uM 
of the centre point and uD of the diameter merely depend on the number n of points and the standard 
deviation s of the random and independent errors of the least squares circle: 

uX = uY = uM = s
n

⋅2
,     uD = s

n
⋅2

 (4) 

For all other patterns of measured points the variances and covariances have to be calculated 
individually. 
 
 
 
 
 
 
 
 
Fig. 2: 
Confidence intervals of the centre and the 
line of a circle; the least uncertainty occurs 
when using 12 points arranged at equal 
distances around the whole circumference 
(same scale like in Fig. 1) 
 

 

4. Other geometric features 

Similar to the circle, the variances and covariances may be calculated for other geometric features, 
and the confidence intervals may be depicted, too. In probe system qualification for example, two 
points are often probed in the direction of the stylus shaft on the upper vertex, and four other points are 
positioned on the equator (Fig. 3). The standard uncertainties of both the stylus tip diameter and that of 
the centre point may then be calculated according to equation (4), too. 
The confidence interval of the centre point is itself a sphere. The confidence interval of the upper 
hemisphere is almost constant. It becomes wider in the lower, because, similar to Fig. 1, there are no 
measured points. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: 
Confidence interval of a least squares 
sphere with six measured points, two of 
which are placed on the upper vertex 
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5. Uncertainty of a diameter 

With the example of a measured diameter of a circle, the uncertainty of measurement shall be 
evaluated according to the GUM, taking into account the following influence quantities: 

• Probing of the object’s surface with eight equally distanced points 

• Probe system qualification with six points according to Fig. 3 

• Calibration of the spherical material standard according to its calibration certificate 

• Temperatures of object, scale and material standard according to [8] 

• Estimated geometrical errors of the CMM 
In probe system qualification, the stylus tip diameter is calculated as the difference between the 
diameters DE of the least squares sphere through the centre points of the stylus tip and DC of the 
material standard. When measuring the object, the diameter DW of the circle is calculated with the help 
of the centre points of the stylus tip. In case of an outside measurement the stylus tip diameter has to 
be subtracted, or added to the inside respectively. The mathematical model of a drill hole diameter 
reads as follows: 

D = DW + ( DE – DC ) (5) 

Furthermore, the influences of the temperatures and of the geometrical errors have to be taken into 
account. Using the terms from Table 1, the complete mathematical model results in: 

D = { (DW+DE)*[1+αS(tS–20°)] –DC*[1–αC(tC–20°)] } *[1–αW(tW–20°)] –∆D (6) 

The diameters DW, DE and DC are calculated inside in the CMM and might not be known exactly to the 
user. The uncertainty may be calculated using the nominal values. 
 
Table 1: Uncertainty budget of a drill hole diameter with the influence quantities: 

DW Diameter of the least squares circle of the object 
DE Diameter of the least squares sphere in probe system qualification 
DC Calibrated diameter of the material standard 

αW Thermal length expansion coefficient of the object (Steel) 
tW Temperature of the object 

αS Thermal length expansion coefficient of the scales (Float glass) 
tS Temperature of the scales (Mean values of both axes) 

αC Thermal length expansion coefficient of the material standard (Steel) 
tC Temperature of the material standard 

∆D Geometrical error of the CMM with MPEE=(2+L/500) µm (L in mm) and L=D; limiting 
value a=D/500 µm 

 
    Number of     
   Best measured Standard    
 Influence  estimate points rsp. deviation Standard Sensitivity Uncertainty 
 Quantity Unit value distribution rsp. limit uncertainty coefficient component 
 Xi [Xi] xi ni si rsp. ai u(xi) ci ui(y) 

 DW mm 90 8 0.002 0.0014 1.0 0.0014 
 DE mm 40 6 0.001 0.0008 1.0 0.0008 
 DC mm 30 Normal 0.0004 0.0002 -1.0 -0.0002 

 αW µm/m/K 12 Normal 2.4 1.20 0.0000 0.0000 
 tW °C 20 Normal 1 0.50 -0.0012 -0.0006 

 αS µm/m/K 7,8 Normal 0.5 0.25 0.0000 0.0000 
 tS °C 20 Normal 1 0.50 0.0010 0.0005 

 αC µm/m/K 11 Normal 2.2 1.10 0.0000 0.0000 
 tC °C 20 Normal 1 0.50 0.0003 0.0002 

 ∆D mm 0 Normal 0.0002 0.0001 -1.0 -0.0001 

 D mm 100,0000 Combined standard uncertainty: uc(y) = 0.0018 

    Effective degrees of freedom: νeff = 11.1 
    Expansion factor: k = 2.20 
    Expanded uncertainty (P=95%): U = 0.0040 
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For the temperature of the scale, the mean value of the two coordinate axes of that plane is used, in 

which the circle is to be measured. The geometrical error of the CMM is not known (∆D=0), but it may 
be estimated as follows. 

6. Estimation of the geometrical errors of the CMM 

The most well known geometrical error of coordinate measuring machines is that of indication for size 
measurement [9]. It is usually verified by measuring gauge blocks or step gauges [10] with one probing 
point at every plane. The maximum permissible error MPEE of indication for size measurements is 
usually stated in the form: 

MPEE = (A + 
K

L
) µm          (measured size L in mm) (7) 

The constant A limits the probing uncertainty of the surface of the gauge and the uncertainty of the tip 
diameter. The length dependent component L/K limits the geometrical errors of the CMM, e.g. that of 
squareness, straightness and of the scales [11]. 
Measuring a diameter, usually more than two points are probed. According to (4), the standard 
uncertainty of the mean diameter DW depends directly on the number of points, if the deviations are 
random and uncorrelated. Should the deviations of the measured points contain systematic local 
deviations of form of the surface, they are correlated, and the uncertainty may be calculated too big – 
but not too small [4-5, 7]. However, the number of points does not influence the other uncertainty 
components such as e.g. the geometrical error of the CMM, which depends on the accuracy of the 
CMM itself. 

7. Discussion about the influence quantities 

The uncertainty may be easily calculated and documented using a table calculation programme. The 
effects of the influence quantities may be thus tested and the measurement strategy be optimized, as it 
will be shown in the example of Table 1. 
The probing of the surface of the object (DW) is the biggest uncertainty component with ui(y)=1.4 µm. 
Increasing the number of measured points to e.g. n=100, reduces it to ui(y)=0.4 µm and will result in a 
combined standard uncertainty of uc(y)=1.2 µm. 
Now the probe system qualification (DE) is the biggest uncertainty component with ui(y)=0,8 µm. 
Increasing the number of points to e.g. n=25, it will be reduced to 0.4 µm. Both steps combined result 
in uc(y)=1.0 µm. The biggest components now are those of the temperatures of the object and of the 
scales (0.6 rsp. 0.5 µm). Both may possibly be reduced further by bringing the object to the right 
temperature and measuring the temperatures more precisely [8]. 
The influence of the estimated geometrical errors of the CMM in comparison to the other components 
is very small and may be neglected. In the case of bigger diameters it actually increases proportionally, 
but the temperature influence increases, too. In the case of D=500 mm the uncertainty component of 
the temperature of the object will result in 2.9 µm and that of the scale in 2.1 µm and, finally, the 
combined standard uncertainty in uc(y)=4.0 µm. The geometrical error, at 0.6 µm, remains negligible in 
comparison to the other components. 
The extracted knowledge may be generalized (Table 2), distinguishing between the measurement of 
workpieces from mechanical engineering and the calibration of material standards. 

8. Repeated Measurements 

Repeated measurements are carried out whenever the relationship between the influence quantities 

and the measurand is not known, and the mathematical model cannot be stated. The best estimate y  

and the standard uncertainty of the measurand will then be calculated directly from the measured 
values yi. 
But in this way the different effects of the influence quantities cannot be determined. For example the 
temperature may be registered with each and every repeated measurement, but the errors of the 
workpiece are superposed by the random probing errors. Measuring small workpieces with a small 
number of points may often leave the influence of the temperature unrecognized. 
A further problem is the varying measuring conditions. Because of organizational restrictions, repeated 
measurements are often carried out at short, successive intervals. But this does not, as it were, reflect 
the temperature variations as they occur throughout a day, week or seasons of the year. Therefore, the 
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evaluated uncertainty is only valid for the temperature range during measurements, which has to be 
documented with the uncertainty. For this reason the impact of the temperature may be better 
estimated according to the method B of the GUM [8, 11]. 
 
Table 2: Influence quantities to be taken into account in the mathematical model; the order represents 

their importance (value) 
 
Dimensions in 
comparison to 
the CMM 

Objects with relatively large local 
deviations of form (measurement of 
workpieces) 

Objects with relatively small local deviations of 
form (calibration of material standards) 

Small objects • Number and position of the 
measured points on the surface 

• Number and position of the measured points 
on the surface 

• Number and position of the measured points 
in probe system qualification 

• Temperatures of the object, the scales, the 
material standard and the stylus 

• Calibration of the material standard 

• Geometrical errors of the CMM 

• Time-dependent drift of the CMM 
Large objects • Temperatures of the object and 

the scales 

• Number and position of the 
measured points on the surface  

• Geometrical errors of the CMM 

• Temperatures of the object, the scales, the 
material standard and the stylus 

• Number and position of the measured points 
on the surface 

• Number and position of the measured points 
in probe system qualification 

• Calibration of the material standard 

• Geometrical errors of the CMM 

• Time-dependent drift of the CMM 

9. Local deviations of form 

Repeated measurements may be carried out to evaluate the influence of local deviations of form on 
the surface, particularly if they are relatively large. But repeated measurements at the same points of 
the surface detect only the random probing errors (Fig. 4 above). Generally, the points to be measured 
are not defined in the technical design. That is why all points of the surface must have the same 
chance to be programmed and measured. The procedure of uncertainty evaluation has to take into 
account this random choice, and the dispersion of the results will become much bigger (Fig. 4 below). 
 
 
 
 
 
Fig. 4: 
Measuring a straight line with two points at 
any one time; the effect of probing a surface 
with large local deviations of form at the 
same points (above) or at various points 
(below) 
  
 
The standard deviation of the repeated measurements may then be used instead of the standard 
uncertainty u(xi) of the diameter DW in Table 1. With a large number of measured points, it will come 
closer to the standard deviation of the probing system of the CMM. However, the influence of the 
temperatures has to be taken into account with each case. Changing them during the repeated 
measurements will increase the standard deviation. 
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10. Simulation 

The uncertainty of measurement may also be evaluated by simulation, and initial experience with the 
Virtual CMM is documented [12]. Certainly, the mathematical models of the individual measuring tasks 
are not indicated. In this way neither the validity of the mathematical models may be verified nor may 
the effects of the individual influence quantities on the uncertainty be evaluated. 
One further disadvantage of the implemented procedures is the one-sided concentration on the CMM 
itself. It takes some time to determine its errors when measuring material standards, e.g. ball plates, 
with a limited use, because the geometrical errors of the CMM may be easily estimated – provided that 
the maximum permissible error for size measurements is not exceeded. Also the influences of the 
temperatures may be estimated using the method B of the GUM. 
Furthermore, the recently realized procedures of the Virtual CMM do not take into account at all the 
effect of the local deviations of form on the surface, neither how it may be estimated with the 
mathematical model nor how it might be evaluated by repeated measurements. That is why the Virtual 
CMM may be applied to the calibration of material standards, but not to measurements of workpieces 
with relevant deviations of form. In this case, this influence has to be quantified by other ways, and the 
Virtual CMM will be one component in a composite statement of uncertainty. 

11. Substitution measurements 

In substitution measurements, a working standard of similar shape and size to the object is to be 
measured in the same position and orientation on the CMM. The geometrical errors of the CMM are 
corrected by the measured deviations of the working standard. This method has already been known 
for a long time as the comparator method and is mainly applied to the calibration of working standards. 
The mathematical model of a substitution measurement may generally be written as: 

Y = X – XS + XC (8) 

Using the standard deviations uX, uXS and uXC of the influence quantities  
X Measurement of the object (workpiece),  
XS Measurement of the working standard, and  
XC Calibrated value of the material standard,  

the combined standard uncertainty uc(y) of the measurand Y may easily be calculated to: 

uc(y) = 222
xcxsx uuu ++  (9) 

The standard uncertainty uXC of the calibrated value may be taken from the calibration certificate. The 
standard uncertainties uX of the object’s measurements and uXS of the working standard may be 
evaluated e.g. by repeated measurements. In the case of the workpiece, the influence of the local 
deviations of form on the surface has to be taken into account by probing various points. Additionally, 
the influence of the temperature has to be calculated. 
The measurement of the drill hole diameter documented in Table 1 may also be carried out as a 
substitution measurement using a calibrated gage ring instead of the spherical material standard. Such 
rings are usually calibrated with an expanded uncertainty of 0.7 to 1 µm. This corresponds to an 
uncertainty component of at least 0.35 µm. Measuring this ring with e.g. n=100 points and a standard 
deviation of s=1 µm results in an uncertainty component of 0.2 µm. Both components are bigger than 
the estimated component of the geometrical error of the CMM (0.1 µm). The substitution measurement 
yields no advantage. It would only increase the uncertainty of the drill hole diameter. 
This is generally valid for all small workpieces, too. However, if the uncertainty components of the 
calibration of the working standard and its measurement are smaller than the estimated uncertainty 
component of the geometrical errors, the substitution measurement may be applied to reduce the 
uncertainty. 
Recently, the substitution method is often used to calibrate gauges, because only small numbers of 
points are used in probe system qualification and in objects measurement. Increasing these numbers 
would be much more effective, in particular because spherical material standards may be much more 
precisely calibrated than gauge rings. 
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12. Conclusions 

• The number and positions of measured points have a great effect on the uncertainty of coordinate 
measurements. This may be illustrated by the confidence intervals of the geometric features. 

• The standard deviation of the measured points from the geometric features includes the impact of 
the local deviations of form and may be used to evaluate the uncertainty. 

• The uncertainty component of the geometrical errors of the CMM may be estimated using the 
length-dependent part of the maximum permissible error MPEE for size measurement. 

• In repeated measurements of surfaces with relevant local deviations of form, in every measurement 
other points of the surface have to be probed. 

• The effect of the temperature in repeated measurements often may not be determined completely 
and should rather be calculated. 

• Simulating the geometrical errors of the CMM, the influence of the local deviations of form of the 
object is not taken into account and has to be quantified by other ways. 

• Substitution measurements are only effective if the uncertainty can be really reduced. 
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